Submission form

Use this form to submit your Great Idea for The Bays Precinct, Sydney. There are three ways to respond:

1. Make an online submission via www.thebayssydney.com.au/callforgreatideas. This must be accompanied by a signed declaration form (available from www.thebayssydney.com.au) and can include a maximum of three A3 pages of images, graphics or sketches to support your idea, to a maximum file size of 5MB.

2. Download the required forms at www.thebayssydney.com.au to complete on your computer and email them to thebaysprecinct@urbangrowth.nsw.gov.au. Emailed submissions must include a signed declaration form and can include three A3 pages of images, graphics or sketches to support your idea, to a limit of 5MB.

3. Print the required forms and complete by hand. Submissions must include a signed declaration form and can also include three A3 pages of images, graphics or sketches to support your idea. Post this to Call for Great Ideas, UrbanGrowth NSW, Level 16, 227 Elizabeth Street, Sydney, NSW 2000.

Prior to completing your submission, refer to the Call for Great Ideas document available from www.thebayssydney.com.au to learn all about the Call for Great Ideas.

The Call for Great Ideas is an opportunity for everyone to present innovative ideas for the immediate priority Destinations of The Bays Precinct:

1. Bays Waterfront Promenade
2. Bays Market District
3. White Bay Power Station
4. White Bay including White Bay Cruise Terminal.

Transforming City Living: The Bays Precinct is available from www.thebayssydney.com.au. This provides details about each Destination as well as the ambition and objectives that will be used to assess the Great Ideas.

How to complete this form

To enable a consistent and fair approach to evaluation, all submissions should:

- provide clear and succinct responses that adhere to word limits for each section
- demonstrate how your Great Idea aligns with the objectives for The Bays Precinct
- include a signed Declaration Form.

This form will restrict your input to the required fields only. You must download it and save it to a safe place on your own computer before returning it using option 2 or 3 mentioned above (option 1 offers the ability to submit using an online form).

Use the tick boxes and text boxes to add your information, as if you were filling in a normal Word document. Please adhere to the word limits.

When you have filled in your information please save the file with your name, initial, title and document description/type (for example, SmithJ_Title_Submission.doc). Please name any attachments in the same manner (for example, SmithJ_Title_Attachment1.pdf, SmithJ_Title_Attachment2.pdf etc).
Does your Great Idea align with Sydney's Global Competitiveness? How? (Limit: 100 words)

Innovative thinking and technology to be exported globally.

Does your Great Idea align with Living Bays? How? (Limit: 100 words)

Does your Great Idea align with Housing Choices? How? (Limit: 100 words)
Health Impact Assessment (HIA)-Planning Waste to Energy for Sydney

This poster is a preliminary Health Impact Assessment (HIA) which could be used to help guide New South Wales Government policy and landuse planning for Energy (WTE) incineration in Sydney. There could be a number of regional benefits of using waste incineration, however would such facilities have too higher health impacts on local urban communities living near these facilities?

Potential emissions, health impacts and risk groups of waste incineration

Research indicates that well designed, well run and well monitored new generation WTE incinerators are considered reasonably safe to human health. However incineration particularly from older style plants have been linked to a number of risk (Fig 1).

Potential impacts on Human Health
- Asthma, cardiovascular disease, respiratory disease, cancer, impaired intellectual development, skin and eye irritations.
- Possible endocrine, immunological and fertility problems.
- Textile, babies, children, elderly, smokers.
- Asthma, persons already suffering from heart and lung disease.

Particulate matter PM10 and PM2.5, soot and dust, heavy metals such as mercury, cadmium, lead, arsenic and beryllium, nitrous oxides, acids, fumes, sulfur dioxide, carbon monoxide and ozone.

Potential Pollutants
- Polychlorinated hydrocarbons
- Polyaromatic hydrocarbons
- Direct inhalation of outdoor and indoor air pollution, pollution from motor vehicles, incomplete combustion of fossil fuels, photosynthetic smog mixing to form ozone, indirect exposure through soil, food and breast milk.

Populations at Risk
- Sources of potential exposure

Figure 1. Types of emissions from waste incinerators and potential health impacts

Air pollution studies show at risk groups include the elderly, very young and people with pre-existing illnesses and respiratory conditions such as asthma at higher risk from air pollution from waste incineration.

Table 1. NSW WTE policy/landuse planning for incinerators need comprehensive HIAs

1. What is the proposal?
 Development of WTE Policy for Sydney and NSW

2. What is the context outlined for the proposal?
 Needs to be used in the development of WTE policy for Sydney and NSW

3. Does the policy concern any of the following determinants?
 - Lifestyle
 - Physical environment
 - Social/economic affairs
 - Capacity of the health system to impact on these determinants
 - Ecologically sustainable development

4. What are the assumptions embedded in the undertaking the proposal?
 Integrated landuse, electricity, waste and transport management would go hand in hand with WTE planning in Sydney and NSW. Potential sites for incineration within existing industrial areas, Material Waste Facilities, electricity generation or conversion of cement kilns. Source separation of waste (particularly hazardous waste) and recycling continues.

5. Why does the proposal have potential to impact on health?
 Potential or perceived harm on local communities from incinerator emissions. Potential to impact health directly or indirectly. Further investigation need as some effects still not known. Cumulative and cumulative impacts must be considered.

6. What are the potential positive impacts?
 - Less reliance on fossil fuels (coal, coal seam gas et al) to generate electricity. Potential for fewer overall truck and waste/fossil fuel transport movements, (therefore a potential to improve regional air quality), electricity generation closer to source of consumption improving efficiency, local job creation.

7. What are the potential negative impacts?
 - Emission impacts on health of poorly designed, operated, monitored and maintained incinerators. Local impact on people’s perception of incineration may cause worry about impacts on health and property prices (Burden may be higher on communities already with health and socioeconomic issues). Risk perception.

8. Intended consequences
 - Reduce reliance on fossil fuels, improve electricity generation reliability, reduced transport on roads thereby potentially improving regional air quality.

9. Possible unintended consequences
 - Regional redistribution of jobs, contamination of feedstock waste for incineration goes up, if people become lazy about recycling and removing hazardous wastes.

10. Describe any information which identifies the nature and extent of the impacts on health for this type of proposal
 - Old incineration plants found to have health impacts on communities located close to facilities. New incineration plants have lower emissions, however as there are few long term studies of these plants. Precautionary principle must be used.

11. List the groups most likely to be affected by this proposal
 - Populations already experiencing poor health, access to services, live close to major roads, have low socio economics may experience confounding factors from WTE.

12. What are some the potential desirable equity issues?
 - Placement of incinerators close to source of consumption and generation of waste.

13. What are some of the undesirable equity issues?
 - Incinerators may be placed in areas where proportionally less of the waste and electricity is consumed thereby confounding socio-economic and health inequalities.

14. Is a risk appropriate?
 - A comprehensive HIA should be used in the development of WTE Policy and Planning for Sydney and NSW

Recommendations/Comments
- NSW Department of Health, Department of Planning and Infrastructure, and communities must be involved in the development of policy and specific incineration proposals.
- Good risk communication and education of the community is essential.

Figure 2. Interactions which may affect population health outcomes.

Conclusion/Recommendations

- Currently evidence suggest that new generation WTE incineration technology which uses modern scrubbers (filters), stringent monitoring and mitigation posses little health risks to populations, however in the absence of long term epidemiological studies the use precautionary principles must be exercised and each WTE incinerator be assessed on a case by case situation.

- A comprehensive HIA should be used in the development of Waste to Energy Policy and landuse planning for NSW and must include stakeholders.

Acknowledgments and references (please refer to separate sheet)

This poster formal and content has been adapted from Harris P, Harris-Roxas B, Harris E, and Kemp L (2007) Health Impact Assessments and Practical Guide, Sydney Centre for Health and Equity Training Research and Evaluation Part of UNSW Research Centre for Primary Health Care and Equity UNSW. Accessed 29 March 2012.
Health Impact Assessment of Waste to Energy Incineration

Angela Dunnett
Potential Pollutants from Waste Incinerators

Particulate matter PM10 and PM2.5, soot and dust
Heavy metal such as mercury, cadmium, lead, arsenic and beryllium
Nitrous oxides, dioxins, furans, sulfur dioxide, carbon monoxide, ozone
Polychlorinated biphenyl (PCB’s)
Polycyclic aromatic hydrocarbons
Potential Impacts on Human Health from Waste Incineration

- Asthma, cardiovascular disease, respiratory diseases, cancer, impaired intellectual development, skin and eye irritations
- Possible endocrine, immunological and fertility problems
Sources of Potential Exposure

Direct inhalation of outdoor and indoor air pollution

Pollution from motor vehicles

Incomplete combustion of fossil fuels

Photochemical smog mixing to form ozone

Indirect exposure through soil, food and breast milk

Bioaccumulation in food chains
Potential Populations at Risk from Incinerator Emissions

Foetus, babies, children,
Elderly, smokers,
Asthmatics,
Persons already suffering from heart and lung disease
Health Impact Assessments (HIA) and Health Equity

Waste to Energy (WtE) policy, proposals and land use should use precautionary principles and need Comprehensive HIA’s

Health and socioeconomic profiles must be used to identify populations who might experience confounding impacts
Integrated Waste Management

Reducing toxics in the waste stream

Product Stewardship to recycle TV’s Computers

Planning for decentralised drop-off centres for paints, batteries and other hazardous materials
Planning Strategically and Sustainably for Sydney’s Waste Recovery and Disposal 2026

Q&A

Proposed Advanced Resource Recovery and Energy-from-Waste Parks

New South Wales Department of Planning and Infrastructure
This brochure aims to educate the community on the economic, environmental and social impacts of landfill and suggests there are more sustainable 'greener' solutions to landfill disposal of waste in Sydney. Sydney has less than 20 years of landfill space available. Without good planning and investment in low emissions waste recovery and waste-to-energy technology (WtE) Sydney may have no other choice than to transport its waste large distances to landfill. Landfill has the potential to pollute our waterways, land and air and has the potential to harm the health of humans and animals. This document considers recovery and disposal waste in the context of Sydney’s growing population and move to a low carbon economy.

This document contains brief outline of the challenges and possible solutions to planning for Sydney’s waste recovery and disposal. A more detailed document is will be prepared by the Department of Planning and Infrastructure (DOPI) after extensive stakeholder education and participation in the planning process.

A case study of Denmark’s best practice ‘green’ technology, which converts household waste-to-energy, is provided. Many European advanced waste-to-energy parks are tourist attractions have adaptively reused old power stations and tips for ski fields and parks. Further to this energy may be generated without the need to build new coal fired power plants and produce localised energy which is more efficient.

Too often, the only time we all think of waste is if it is not collected from our homes. Avoiding waste generation and recycling are absolutely necessary for Sydney to remain the vibrant healthy place it is. Waste-to-energy may only be one of the solutions. Landuse and infrastructure planning, education and legislation will need to be used to achieve good financial, social and economic outcomes for Sydney’s Waste. To do this, we need to realign our thinking and consider waste as a resource.
Challenges with Sydney’s Waste Disposal to Recovery

Sydney population is planned to grow by another 1.7 million people from 2006 to 2036

Population will lead to growth in waste production

Sydney is running out of available space for landfill in the Metropolitan Area and Woodlawn only has a 20 year capacity to cope with municipal waste

Waste will have to be transported further and further away for disposal which will have economic, environmental and social costs of disposal

Poorly maintained and managed landfills which don’t capture greenhouse gases such as carbon dioxide and methane will contribute to the problems of global warming

Landfill can be harmful to the environment and human health by leaching out harmful chemicals into land and water

Current methods of recycling and disposal are inadequate and there has been an under investment in infrastructure to deal with the growing problem of waste

Strategic planning must be investigated to find solutions for waste and resource recovery
An Overview of Current Waste Disposal and Diversion of Waste to Landfill

A Major Problem with Sydney’s Landfill—where running out of space!

Landfill disposal in 2007/2008 was 1,850,000 tonnes per year which is above the target of 1,535,000 tonnes per year target (Wright, 2009).

Chart 1 shows **landfill capacity will be reached by 20017/2018** without further intervention and planning. Increased population growth and consumption rates could considerably impact on this landfill capacity.
What about current Alternative Waste Technologies (AWT’s)? Can’t this be used instead of landfill?

- AWT’s are used as a method of resource recovery which divert waste from landfill and can produce useful commercial products such as biogas, biofuels, fertilizer for farming and compost.

- The waste at Macquarie University Campus is processed at an AWT to make fertiliser—this rubbish and residual household waste (which is the rubbish that goes in the red bin) may contain contaminants which are hazardous to human and environmental health such as plastics, batteries, paints and household chemicals etc.

- Fertilisers produced from some AWT’s may only be suitable for a one-off application of rehabilitated mine sites because of contamination, therefore its final destination may end-up being landfill anyway.

- Many of the AWT’s are not working and this means it ends up in landfill anyway. The Chart 2 illustrates most waste still goes to landfill.

Chart 2 Where does most of our waste go? Still mostly to landfill!
Australia is a big place! There is plenty of landfill out there. Why don’t we make a big hole and bury it in the outback!

Waste has many economic, environmental and social impacts. The NSW Government does not consider landfill as a sustainable solution for dealing with Sydney’s long term waste.

Waste can contain harmful chemicals to humans and animals and may leach into the environment!

All landfills release greenhouse gases such as carbon dioxide and methane which add to global warming and the problem of climate change. Some landfills are able to capture these gases and turn them into biogas, however most landfill cannot do this and it would be too costly to do.

Transporting large amounts of waste long distances by road will also add to greenhouse gases, and it will be costly financially to do this as well.

Are there any countries who have found sustainable ways of dealing with waste disposal?

The Europeans are leading the way with advanced resource recovery and waste-to-energy (WtE). (Please see case study of Europe). WtE technology parks can provide localised heat and electricity to residents and would be used with a mix of other renewable technologies such as solar and wind power to form a smart grid.

Advanced waste-to-energy treatment technologies been proven to have few if any emissions after burning waste at extremely high temperatures. A series of filters are used to collect any residues. There is strict environmental monitoring and the Office of Environment and Heritage would also independently monitor emissions.

![Image](image_url)

Picture: The Spittelau WtE plant is a tourist attraction situated in the heart of Vienna. Over the last 10 years WtE technologies have reduced their emissions by a factor of 10.
Case Study

European Waste-to-energy and Resource Recovery Parks
A Sustainable Solution to Landfill

European WtE plants provide electricity to the grid and can be used to heat nearby homes. A combination of legislation and technology has helped Copenhagen divert large amounts of waste from landfill. In 2008 only 2.2% of the 904,216 tonnes of waste was sent the landfill. Twenty five to forty percent of waste was sent to its three WtE plants. A generalised diagram of the WtE process is provided in Chart 3. Green waste and uncontaminated food waste is still turned into compost and can also be used for producing biogases and biofuels. Waste is first recycled at the parks onsite using traditions material resource recovery facilities and separation techniques (MRF’s).

WtE plants are positioned close to urban centres. This means that energy efficiency is improved because you don’t lose at much energy in the grid. Many WtE parks in Europe have become tourist attractions themselves. Parklands and ski slopes surround the energy and resource recovery centres. In many European countries WtE systems is also considered to by renewable form of energy and is evaluated in the same way as biofuels and biogas energy. The added value in WtE is that it can be used to replace fossil fuels thus reducing the need to build coal powered power plants. High heat combustion is currently being used to treat medical waste in Australia.

NSW has excellent recycling rates. Why would we use this material to make energy when it can be used to make other products?

Waste avoidance and recycling will still be central to helping achieve sustainability in Sydney. Source separation and recycling still would still be taking place onsite at the Parks. It is only whatever that cannot be recycled which is finally sent to the extremely high heat furnace for the production of electricity.

Are there places in Sydney DOPI thinks would be that would be suitable for Advanced Resource Recovery and Energy-from-Waste Parks (ARREWP)?

DOPI believe there are a number of sites which could be suitable for ARREWP in Sydney. Decentralised waste recovery and power generation would give the best environmental and social outcomes to Sydney residents.

Existing tips and resource recovery centres would be ideal sites to locate Advanced Resource Recovery and Energy-from-Waste Parks. Local environments would actually improve, as there would be fewer odours being produced as there is with existing tips, waste transfer stations and material resource recovery centres. (Please see environmental and social outcomes of preventing waste going to landfill discussed earlier).

The idea would be to position ARREWP near existing and proposed growth areas. The following page the suggested optimum distribution for ARREWP and has been overlayed onto the Metropolitan Plan for Sydney 2036. You will see they are evenly distributed throughout the Sydney metropolitan basin and position strategically to existing and proposed growth centres.

Brownlands such as the decommissioned White Bay Power Station is ideally located to providing resource recovery and energy to the densely populated city. (See latter in brochure).

I don’t see how there can be any benefits for me? I can only see that the price of property will drop.

It is not only environmental benefits that will be gained but social and economic benefits to all residents in Sydney with a network of ARREWP. If existing sites with tips, brownlands and recovery centres are used to locate these Parks there will be fewer unpleasant odours than what already exists at these sites. There will also likely be fewer truck movements and traffic at most sites because the waste will be recycled and then any residual can be used to generate energy all at the one decentralised site. Extensive community consultation and public exhibition will take place all throughout projects: from the planning stages and well beyond completion of projects.

The prices of neighbouring properties to these Park may actually increase in value if these former tips and brownlands are also turned into reinvigorated parklands, offices, shops, cultural centres and so on. This in turn could provide jobs and stimulate local economic growth.
What type of community consultation will take place?

Community consultation will be central in planning Sydney’s Advanced Resource Recovery and Energy-from-Waste Parks (ARREWP). Some of the forms of stakeholder engagement will include;

- Preparation, exhibition and submission of Environmental and Social Statements
- **Education days** and community picnics for schools and the public
- Online and town hall **forums**
- Display days
- Art and architectural **competitions** for design of spaces and parks
- **Tours** of existing sites and interactive models of proposed ARREWP
- New community gardens, bike tracks, parklands and cultural centres

How much will it cost? Will these waste parks be economically viable?

There would be high capital cost associated with setting up and operating resource recovery and WtE parks, however research from countries in Scandinavia, and our own initial research, has found these Parks to be economically viable.

1. Landfill is becoming increasingly hard to find in the Sydney basin or nearby. Limited landfill means higher disposal or treatment cost at AWT’s. There would also be economic costs of transport waste.

2. Landfill generates greenhouse gases which will be taxed under an emission trading scheme (ETS).

3. The sale of recycled materials will generate income.

4. The energy produced can be sold back to the grid. This localised energy distribution will be more efficient, thereby saving money.

5. Building new coal powered stations is not economically viable. The carbon tax and a future ETS will make coal uncompetitive against renewable energy technology such, solar, wind, hydro and energy-from-waste.
White Bay is a Brownfield site in Rozelle, which was formally used as a power station up until the 1980’s and is currently unused. The site could be remediated and turned into a vibrant work and cultural centre. A state of the art EfW and resource recovery park could be located here, whilst the retaining heritage of the former site. Parklands, retail stores, offices with onsite kindergartens and museums/arts centres have also been planned for the site. See White Bay Master Plan.

From this

To something like this

Vertical garden on EfW Plant

Cycleway and Parklands
Are there any other issues DOPI may have to consider in planning for these Advanced Resource Recovery and Energy-from-Waste Parks (ARREWP)?

Yes. As will all development there is extensive planning considerations and legislation that must be followed. The Environmental Planning and Assessment Act 1979 underpin all landuse planning in NSW. Planning for ARREWP’s will take place under the Infrastructure State Environmental Planning Policy (2007) SEPP. DOPI will be working closely with the community and local councils to ensure there is appropriate landuse zoning in their Local Environment Plans (LEP’s).

Infrastructure SEPP (2007) at outlined by NSW Legislation

The aim of this Policy is to facilitate the effective delivery of infrastructure across the State by:

(a) improving regulatory certainty and efficiency through a consistent planning regime for infrastructure and the provision of services, and
(b) providing greater flexibility in the location of infrastructure and service facilities, and
(c) allowing for the efficient development, redevelopment or disposal of surplus government owned land, and
(d) identifying the environmental assessment category into which different types of infrastructure and services development fall (including identifying certain development of minimal environmental impact as exempt development), and
(e) identifying matters to be considered in the assessment of development adjacent to particular types of infrastructure development, and
(f) providing for consultation with relevant public authorities about certain development during the assessment process or prior to development commencing.
What to do with waste and energy in Sydney-A Health Impact Assessment on the cost and benefits of energy derived from waste incineration. Weighing up the cost and benefits to health of choosing landfill disposal over new waste to energy technologies.

Using a variety of sources I will attempt to way-up the arguments for and against using waste incineration in Sydney to generate electricity. I will provide information on benefits and costs of new waste to energy (WtE) technologies socially, economically and environmentally. In this research topic I will also investigate health impacts on populations who have lived next to WtE facilities verses the overall benefits of reducing greenhouse gas emissions from landfill and truck movements.

Past Municipal Waste Incinerators got their bad name from being polluting industries. The types of chemical incinerators produce include dioxins,Documented health effects from pollutants produced by incinerators include cancers and respiratory illnesses.

New technology WtE facilities have been heralded in recent time as a sustainable solution to waste management. Waste incineration for energy generation is being used increasingly overseas. Many European cities now have WtE plants in centralised urban areas, (predominately because landfill is of a premium). I believe waste incineration could have role to play in Sydney’s ecologically sustainable development, urban consolidation and integrated waste and energy management. My paper will consider strongly any environmental or health implications it has for people living near WtE facilities against the benefits of reducing greenhouse gases and improving air quality as a whole. I will also provide information on health implications of living near landfill sites and the health implications of mass transport of waste.

A few things must be clarified before proceeding with this proposal.

1) The Sydney Basin is running out of available landfill space which means unless there are appropriate Alternative Waste Technologies (AWT) available Sydney’s waste will have to be transported further and further distance for disposal. This has QBL costs.

2) Landfill and waste transport emit greenhouse gases such as methane and impact on air quality. Landfills can leach harmful chemicals into the environment.

3) Recycling of material is still the top priority. Non-recyclable materials will be used for feedstock for WtE plants and packaging and product stewardship must still be pursued. Source separation of hazardous waste such as chemical and e-waste will occur as much as possible.

4) Decentralised WtE plants can form part of renewable energy smart grids (including solar, wind etc) which will reduce the need to mine more coal or coal seam gas for energy requirements. Localised energy production is more efficient. There would be fewer truck movements and impacts of mining on GHG emissions.

5) Assuming Land use planning allows location of WtE plant could go within an existing landfill resource recovery sight such as Eastern Creek in Western Sydney.

Papers-

IOM Consultants produced a HIA Assessment of a proposed Biomass Fuelled Power Plant in Northern Island. Much of this paper includes reviewing research papers on health impact of old and new incineration plants. The paper discusses how there is still much evidence of impacts that is unclear and that precautionary principles such be used in assessing impacts. Health and social impact factors have also been considered on the particular population. It identifies those people in the community who may be more venerable to exposure from emission from WtE plants such as children and pregnant women.

Machlin Y, Kibble A, Pollitt F (2011) Impact on Health of Emissions from Landfill sites-Advice from the United Kingdom Health Protection Agency (HPA)
http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1309969974126

The UK HPA continually monitors evidence of impacts of different waste disposal options on human health, including landfill and incineration, using a precautionary principle approach. The paper reiterates how more evidence needs and risk assessments may need to be gathered at specific sites and there should be greater toxicological data compiled. The paper says it cannot find any consistent elevated impacts on people living close to landfill sites. The paper gives a list of landfill emissions and sources of possible exposure, including those from transport. There are three different types of landfills which are heavily regulated and take different types of waste in the EU. Landfills need to be looked at and monitored individually most modern landfills are lined and capped whilst other are not. Methane (65% by volume) and carbon dioxide (35% by volume) are the main gases. Both these gases can have health impacts if not properly managed through landfill gas management. Nitrogen and sulphur dioxide are lower for direct landfill emissions than other industries. Considerations of combustion of landfill gases and generation of acid gases are also considered in this paper. Landfill sites must meet strict regulations on Air Quality as they do in Australia. Health impacts on Asthmatics, elderly and children are given special consideration. Conditions range from mild watering of eyes to. Dioxins are also given special consideration as may have effect on foetus and be responsible for cancers. Locally grown produce was seen as one of the main ways to ingest dioxins; however these were not significantly higher than background levels. Small chance that some other toxins could cause cancer. Volatile Organic Gases (VOC’s) could come from burning landfill gas and uncapped sites where landfill gases are not collected. Hydrogen sulphides mostly had odour impacts. Particulate matter can also be generated from a number of landfill activities. PM10 and PM2.5 come from landfill sites and can impact on elderly and young and those with pre-existing heart and lung conditions. Leach ate heavy metals and odours. Continue with bioaeriosols and epidemiologic studies.....

Paper summary.

British society for ecological medicine incinerators and health

Health Effects incinerators-Scientific and stakeholder papers (Greenpeace?)

Health Status of Western Sydney

National Greenhouse Gas Inventory-transport, mining, and landfill impacts
Sydney Air Quality

Emission standards for Energy Plants

Richmond Waste Report

Waste Strategy